Preview

Economy: strategy and practice

Кеңейтілген іздеу

Қарт адамдардың денсаулық сақтау саласындағы ақпараттық жүйелерді қабылдауы: технологияны қабылдау моделі

https://doi.org/10.51176/1997-9967-2025-2-37-53

Толық мәтін:

Аңдатпа

С учетом ускоряющегося процесса старения населения возрастает необходимость адаптации пожилых граждан к использованию цифровых решений в сфере здравоохранения, включая информационные системы здравоохранения (далее – ИСЗ), как важного элемента доступной медицины. Целью настоящего исследования является изучить использование и принятие ИСЗ пожилыми гражданами Турции, которые продолжают трудовую деятельность или обладают трудоспособностью, с применением модели принятия технологий (далее – MПТ) в качестве теоретической основы. В исследовании был использован количественный подход, включающий анализ данных анкетирования 221 пожилого человека, а также сравнительного набора данных от 50 представителей среднего возраста и 56 пожилых участников. Результаты показали, что такие факторы, как самоэффективность (β = 0,73, p < 0,001) и сопутствующие условия (β = 0,77, p < 0,001), статистически значимо предсказывали воспринимаемую простоту использования, которая, в свою очередь, была значимо связана с воспринимаемой полезностью (β = 0,73, p < 0,001). Однако ни воспринимаемая полезность, ни воспринимаемая простота использования не оказали значимого влияния на отношение и поведенческое намерение пожилых участников. Результаты t-критерия не выявили статистически значимых различий в уровне принятия ИСЗ между представителями среднего (33–40 лет) и пожилого (65–76 лет) возраста по всем исследуемым факторам (p > 0,05). Анализ также показал, что физические, моторные и когнитивные способности пожилых лиц, продолжающих трудовую деятельность или обладающих трудоспособностью, находятся в лучшем состоянии по сравнению со сверстниками. Соответственно, уровень использования и принятия ИСЗ среди представителей среднего и пожилого возраста оказался практически одинаковым. Тем не менее, установлено, что определенные улучшения в системе могут способствовать повышению уровня использования ИСЗ.

Авторлар туралы

С. Яхши
Басқару ақпараттық жүйелері факультеті, Анкара Йылдырым Беязит университеті
Түркия

магистр

Кизилжа Есенбоға кампусы, Анкара



И. Т. Медени
Басқару ақпараттық жүйелері факультеті, Анкара Йылдырым Беязит университеті
Түркия

PhD, профессор

Кизилжа Есенбоға кампусы, Анкара



Д. Т. Медени
Басқару ақпараттық жүйелері факультеті, Анкара Йылдырым Беязит университеті
Түркия

PhD, профессор

Кизилжа Есенбоға кампусы, Анкара



М. С. Гузель
Басқару ақпараттық жүйелері факультеті, Анкара Йылдырым Беязит университеті
Түркия

PhD, профессор

Кизилжа Есенбоға кампусы, Анкара



Әдебиет тізімі

1. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 16(2), 227247. https://doi.org/10.2307/249577

2. Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28(3), 557-582. https://doi.org/10.1111/j.1540-5915.1997.tb01322.x

3. Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204

4. Agarwal, R., Sands, D. Z., & Schneider, J. D. (2010). Quantifying the economic impact of communication inefficiencies in US hospitals. Journal of Healthcare Management, 55(4), 265-282. https://doi.org/10.1590/1982-7849rac2019170396

5. Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888. https://doi.org/10.1037/0033-2909.84.5.888

6. Albarracin, D., & Ajzen, I. (2007). Predicting and changing behavior: A reasoned action approach. Prediction and Change of Health Behavior: Applying the Reasoned Action Approach. Lawrence Erlbaum Associates, Mahwah, NJ, 3-21. https://doi.org/10.4324/9780203937082

7. Alpert, J. M., Sharma, B., Cenko, E., Zapata, R., Karnati, Y., Fillingim, R. B., Gill, T. M., Marsiske, M., Ranka, S., & Manini, T. M. (2024). Identifying barriers and facilitators for using a smartwatch to monitor health among older adults. Educational Gerontology, 50(4), 282-295. https://doi.org/10.1080/03601277.2023.2260970

8. Alsswey, A., Umar, I. N. B., & Bervell, B. (2018). Investigating the acceptance of mobile health application user interface cultural-based design to assist Arab elderly users. International Journal of Advanced Computer Science and Applications, 9(8). https://doi.org/10.14569/IJACSA.2018.090819

9. Anderson, A. A. (1996). Predictors of computer anxiety and performance in information systems. Computers in Human Behavior, 12(1), 61-77. https://doi.org/10.1037/0003-066X.51.4.355

10. Anderson, C. L., & Agarwal, R. (2011). The digitization of healthcare: boundary risks, emotion, and consumer willingness to disclose personal health information. Information systems research, 22(3), 469-490. https://doi.org/10.1287/isre.1100.0335

11. Aranha, M., Shemie, J., James, K., Deasy, C., & Heavin, C. (2024). Behavioural intention of mobile health adoption: A study of older adults presenting to the emergency department. Smart Health, 31, 100435. https://doi.org/10.1016/j.smhl.2023.100435

12. Ayabakan, S., Bardhan, I., Zheng, Z. E., & Kirksey, K. (2017). The impact of health information sharing on duplicate testing. MIS Quarterly, 41(4), 1083–1103. https://doi.org/10.25300/MISQ/2017/41.4.04

13. Bandura, A. (1992). Social cognitive theory of social referencing. In Social referencing and the social construction of reality in infancy (pp. 175-208). Springer. https://doi.org/10.1111/1467-839X.00024

14. Bandura, A., Freeman, W. H., & Lightsey, R. (1999). Self-efficacy: The exercise of control. Springer. https://doi.org/10.1891/0889-8391.13.2.158

15. Benbasat, I., & Dexter, A. S. (1986). An investigation of the effectiveness of color and graphical information presentation under varying time constraints. MIS quarterly, 10(1), 59-83. https://doi.org/10.2307/248881

16. Bozionelos, N. (2004). Socio-economic background and computer use: The role of computer anxiety and computer experience in their relationship. International Journal of Human-Computer Studies, 61(5), 725-746. https://doi.org/10.1348/0963179041752682

17. Bozkurt, A., Hamutoğlu, N.B., Kaban, A.L., Taşçı, G., & Aykul, M. (2021). Dijital bilgi çağı: Dijital toplum, dijital dönüşüm, dijital eğitim ve dijital yeterlilikler. Açıköğretim Uygulamaları ve Araştırmaları Dergisi, 7(2), 35-63. https://doi.org/10.51948/auad.911584

18. Brown, S., & Venkatesh, V. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS quarterly, 29, 399-436. https://doi.org/10.2307/25148690

19. Chau, P. Y., & Hu, P. J. (2002). Examining a model of information technology acceptance by individual professionals: An exploratory study. Journal of management information systems, 18(4), 191-229. https://doi.org/10.1080/07421222.2002.11045699

20. Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision sciences, 32(4), 699-719. https://doi.org/10.1111/j.1540-5915.2001.tb00978.x

21. Chen, K., & Chan, A. H. S. (2014). Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM). Ergonomics, 57(5), 635-652. https://doi.org/10.1080/00140139.2014.895855

22. Chin, W. W., & Todd, P. A. (1995). On the use, usefulness, and ease of use of structural equation modeling in MIS research: A note of caution. MIS quarterly, 19(2), 237-246. http://dx.doi.org/10.2307/249690

23. Chua, S. L., Chen, D.-T., & Wong, A. F. (1999). Computer anxiety and its correlates: a meta-analysis. Computers in Human Behavior, 15(5), 609-623. https://doi.org/10.1016/S0747-5632(99)00039-4

24. Davis, F., & Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS quarterly, 13, 319. https://doi.org/10.2307/249008

25. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003. http://dx.doi.org/10.1287/mnsc.35.8.982

26. Drag, L. L., & Bieliauskas, L. A. (2010). Contemporary review 2009: cognitive aging. Journal of geriatric psychiatry and neurology, 23(2), 75-93. https://doi.org/10.1177/0891988709358590

27. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888

28. Gardner, R. L., Cooper, E., Haskell, J., Harris, D. A., Poplau, S., Kroth, P. J., & Linzer, M. (2019). Physician stress and burnout: the impact of health information technology. Journal of the American Medical Informatics Association, 26(2), 106-114. https://doi.org/10.1093/jamia/ocy145

29. Ghasemaghaei, M., Hassanein, K., & Benbasat, I. (2019). Assessing the design choices for online recommendation agents for older adults: older does not always mean simpler information technology. MIS quarterly, 43(1), 329–346. https://doi.org/10.25300/misq/2019/13947

30. Godoe, P., & Johansen, T. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European psychology students, 3(1), 38-52. http://dx.doi.org/10.5334/jeps.aq

31. Guner, H., & Acarturk, C. (2020). The use and acceptance of ICT by senior citizens: a comparison of technology acceptance model (TAM) for elderly and young adults. Universal Access in the Information Society, 19, 311–330. https://doi.org/10.1007/s10209-018-0642-4

32. Guo, X., Sun, Y., Wang, N., Peng, Z., & Yan, Z. (2013). The dark side of elderly acceptance of preventive mobile health services in China. Electronic Markets, 23, 49-61. http://dx.doi.org/10.1007/s12525-012-0112-4

33. Ha, J. Y., & Park, H. (2020). Effects of a Person-Centered Nursing Intervention for Frailty among Prefrail Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 17(18), 6660. https://doi.org/10.3390/ijerph17186660

34. Heart, T., & Kalderon, E. (2013). Older adults: are they ready to adopt health-related ICT? International journal of medical informatics, 82(11), e209-e231. https://doi.org/10.1016/j.ijmedinf.2011.03.002

35. Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/10.1016/j.jbi.2009.07.002

36. Hong, S.-J., Lui, C. S. M., Hahn, J., Moon, J. Y., & Kim, T. G. (2013). How old are you really? Cognitive age in technology acceptance. Decision support systems, 56, 122-130. https://doi.org/10.1016/j.dss.2013.05.008

37. Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International journal of medical informatics, 101, 75-84. https://doi.org/10.1016/j.ijmedinf.2017.02.002

38. Hsiao, C.-H., & Tang, K.-Y. (2015). Examining a model of mobile healthcare technology acceptance by the elderly in Taiwan. Journal of Global Information Technology Management, 18(4), 292-311. https://doi.org/10.1016/j.tele.2015.08.014

39. Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91112. https://doi.org/10.1080/07421222.1999.11518247

40. Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS quarterly, 21(3), 279-305. http://dx.doi.org/10.2307/249498

41. Ismail, N. I., Abdullah, N. H., & Shamsuddin, A. (2015). Adoption of hospital information system (HIS) in Malaysian public hospitals. Procedia-Social and Behavioral Sciences, 172, 336-343. https://doi.org/10.1016/j.sbspro.2015.01.373

42. Khatun, F., Palas, M. J. U., & Ray, P. K. (2017). Using the unified theory of acceptance and use of technology model to analyze cloud-based mHealth service for primary care. Digital Medicine, 3(2), 69. http://dx.doi.org/10.4103/digm.digm_21_17

43. Lam, J. C., & Lee, M. K. (2006). Digital inclusiveness--Longitudinal study of Internet adoption by older adults. Journal of Management Information Systems, 22(4), 177-206. http://dx.doi.org/10.2753/MIS07421222220407

44. Lee, B., Chen, Y., & Hewitt, L. (2011). Age differences in constraints encountered by seniors in their use of computers and the internet. Computers in Human Behavior, 27(3), 1231-1237. https://doi.org/10.1016/j.chb.2011.01.003

45. Lee, Y., Kozar, K. A., & Larsen, K. R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50. https://doi.org/10.17705/1CAIS.01250

46. Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. http://dx.doi.org/10.1016/S0378-7206(01)00143-4

47. Li, H., Wu, J., Gao, Y., & Shi, Y. (2016). Examining individuals’ adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. International journal of medical informatics, 88, 8-17. https://doi.org/10.1016/j.ijmedinf.2015.12.010

48. Li, Q., & Luximon, Y. (2018). Understanding older adults’ post-adoption usage behavior and perceptions of mobile technology. International Journal of Design, 12(3), 93–105. https://doi.org/10.57698/ijdesign.2018.12.3.2869

49. Ma, Q., Chan, A. H., & Chen, K. (2016). Personal and other factors affecting acceptance of smartphone technology by older Chinese adults. Applied ergonomics, 54, 62-71. https://doi.org/10.1016/j.apergo.2015.11.015

50. Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173–191. https://doi.org/10.1287/isre.2.3.173

51. McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334–359. https://doi.org/10.1287/isre.13.3.334.81

52. Mendi, O. (2012). E-dönüşüm sürecinde sağlık bilişimi uygulamalarının yeri ve hastaların e-sağlık uygulamaları kapsamındaki tutumlarını belirlemeye yönelik bir araştırma [Unpublished doctoral dissertation].

53. Nayak, L.U., Priest, L., & White, A.P. (2010). An application of the technology acceptance model to the level of Internet usage by older adults. Universal Access in the Information Society, 9, 367-374. https://doi.org/10.1007/s10209-009-0178-8

54. Ngafeeson, M. N. (2013). Understanding user resistance to information technology: Toward a comprehensive model in health information technology. [Unpublished doctoral dissertation].

55. Nguyen, M., Fujioka, J., Wentlandt, K., Onabajo, N., Wong, I., Bhatia, R. S., Bhattacharyya, O., & Stamenova, V. (2020). Using the technology acceptance model to explore health provider and administrator perceptions of the usefulness and ease of using technology in palliative care. BMC Palliative Care, 19(1), 138. https://doi.org/10.1186/s12904-020-00644-8

56. Niehaves, B., & Plattfaut, R. (2014). Internet adoption by the elderly: employing IS technology acceptance theories for understanding the age-related digital divide. European Journal of Information Systems, 23, 708726. https://doi.org/10.1057/ejis.2013.19

57. Selwyn, N. (2004). The information aged: A qualitative study of older adults’ use of information and communications technology. Journal of Aging Studies, 18(4), 369–384. https://doi.org/10.1016/j.jaging.2004.06.008

58. Smith, A. (2014). Older adults and technology use. Pew Research Center. https://www.pewresearch.org/internet/2014/04/03/older-adults-and-technology-use/

59. Srivastava, A., Ayyalasomayajula, S., Bao, C., Ayabakan, S., & Delen, D. (2022). Relationship between electronic health records strategy and user satisfaction: a longitudinal study using clinicians’ online reviews. Journal of the American Medical Informatics Association, 29(9), 1577-1583. https://doi.org/10.1093/jamia/ocac082

60. Subramanian, G.H. (1994). A Replication of Perceived Usefulness and Perceived Ease of Use Measurement*. Decision Sciences, 25, 863-874. https://doi.org/10.1111/j.1540-5915.1994.tb01873.x

61. Tat, H. C. (2018). Sağlık sektöründe hastane bilgi sistemi kullanımının teknoloji kabul modeli ile incelenmesi [Yüksek lisans tezi, Akdeniz Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Anabilim Dalı]. Akdeniz Üniversitesi Açık Erişim Sistemi. https://acikerisim.akdeniz.edu.tr/handle/123456789/3857

62. Taylor, S., & Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4), 561–570. https://doi.org/10.2307/249633

63. Ticehurst, G., & Veal, A. (2000). Business research methods: A managerial approach. New South Wales: Longman.

64. Venkatesh, V. (1999). Creation of Favorable User Perceptions: Exploring the Role of Intrinsic Motivation. MIS Quarterly, 23(2), 239-260. https://doi.org/10.1111/j.1540-5915.1994.tb01873.x

65. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb00860.x

66. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

67. Vrhovec, S., & Rupnik, R. (2011). A model for resistance management in IT projects and programs. Electrotech Review, 78, 73-78.

68. Vroman, K. G., Arthanat, S., & Lysack, C. (2015). “Who over 65 is online?” Older adults’ dispositions toward information communication technology. Computers in Human Behavior, 43, 156–166. https://doi.org/10.1016/j.chb.2014.10.018

69. Wagner, N., Hassanein, K., & Head, M. (2010). Computer use by older adults: A multi-disciplinary review. Computers in Human Behavior, 26(5), 870-882. https://doi.org/10.1016/j.chb.2010.03.029

70. Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66–77. https://doi.org/10.1016/j.ijmedinf.2006.06.006

71. Yetkin, H. (2021). Sağlık Bilişim Sistemleri Kapsamında Elektronik Reçete Uygulamasına Yönelik Hekimlerin Görüşlerinin İncelenmesi Necmettin Erbakan University. [Unpublished doctoral dissertation].

72. Zallman, L., Finnegan, K., Roll, D., Todaro, M., Oneiz, R., & Sayah, A. (2018). Impact of medical scribes in primary care on productivity, face-to-face time, and patient comfort. The Journal of the American Board of Family Medicine, 31(4), 612–619. https://doi.org/10.3122/jabfm.2018.04.170325

73. Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F., & Wray, N. R. (2014). A comparative study of techniques for differential expression analysis on RNA-Seq data. PloS ONE, 9(8), e103207. https://doi.org/10.1371/journal.pone.0103207


Рецензия

Дәйектеу үшін:


Яхши С., Медени И.Т., Медени Д.Т., Гузель М.С. Қарт адамдардың денсаулық сақтау саласындағы ақпараттық жүйелерді қабылдауы: технологияны қабылдау моделі. Economy: strategy and practice. 2025;20(2):37-53. https://doi.org/10.51176/1997-9967-2025-2-37-53

For citation:


Yahşi Ş., Medeni I.T., Medeni T.D., Güzel M.S. The Acceptance of Health Information Systems by Senior Citizens: A Technology Acceptance Model. Economy: strategy and practice. 2025;20(2):37-53. https://doi.org/10.51176/1997-9967-2025-2-37-53

Қараулар: 14


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1997-9967 (Print)
ISSN 2663-550X (Online)