Preview

Economy: strategy and practice

Advanced search

Machine Learning in Public Governance: A Systematic Review of Applications, Trends and Challenges

https://doi.org/10.51176/1997-9967-2025-2-85-103

Abstract

Today, the active implementation of machine learning (hereinafter – ML) methods in public administration opens up new opportunities for forecasting, impact assessment and decision support, while simultaneously generating various challenges. The present study is aimed at a systematic review of scientific publications devoted to applying ML methods in the field of public administration, with an emphasis on identifying thematic areas, ethical and institutional challenges. The initial data set included 524 publications obtained using targeted search queries in the Scopus and Web of Science databases for the period 2014-2024. Data filtering was performed using SQLite, thematic mapping was performed in the VOSviewer environment, and metadata was structured using the Elicit tool and subsequent manual encoding. The analysis results allowed us to identify four functional areas of ML application in public administration: transparency and ethics, resource allocation and service provision, institutional design, and technical integration. Despite significant progress in the models’ technical implementation and predictive accuracy, in many cases, mechanisms for equity, transparency, and citizen participation have been poorly implemented. The scientific novelty of the work lies in the interdisciplinary synthesis and development of a typology of institutional challenges that arise when implementing ML systems in public administration. The prospects for further research are related to the empirical validation of decisions, the development of ethical audit methods, and institutional training for responsible, sustainable, and contextually adaptive use of algorithmic tools in the public administration system.

About the Authors

Yeldar Nuruly
Al-Farabi Kazakh National University; Centre for Sustainable Development in Central Asia, Al-Farabi Kazakh National University in partnership with the Hong Kong Polytechnic University
Kazakhstan

PhD candidate, Senior Lecturer, Senior Research Fellow

71 al-Farabi Ave., 050040, Almaty



Galiya N. Sansyzbayeva
Al-Farabi Kazakh National University
Kazakhstan

Doc. Sc. (Econ.), Professor

71 al-Farabi Ave., 050040, Almaty

 



Laura Z. Ashirbekova
Al-Farabi Kazakh National University
Kazakhstan

Сand. Sc. (Econ.), Associate Professor

71 al-Farabi Ave., 050040, Almaty



Samal K. Tazhiyeva
Al-Farabi Kazakh National University
Kazakhstan

Сand. Sc. (Econ.), Senior Lecturer

71 al-Farabi Ave., 050040, Almaty



References

1. Ahern, D. (2025). The New Anticipatory Governance Culture for Innovation: Regulatory Foresight, Regulatory Experimentation and Regulatory Learning. European Business Organization Law Review. https://doi.org/10.1007/s40804-025-00348-7

2. Akter, S., Dwivedi, Y. K., Sajib, S., Biswas, K., Bandara, R. J., & Michael, K. (2022). Algorithmic bias in machine learning-based marketing models. Journal of Business Research, 144, 201–216. https://doi.org/https://doi.org/10.1016/j.jbusres.2022.01.083

3. Alexopoulos, C., Diamantopoulou, V., Lachana, Z., Charalabidis, Y., Androutsopoulou, A., & Loutsaris, M. A. (2019). How machine learning is changing e-government. ACM International Conference Proceeding Series, Part F1481, 354–363. https://doi.org/10.1145/3326365.3326412

4. Aljuneidi, S., Heuten, W., Tepe, M., & Boll, S. (2023). Did that AI just Charge me a Fine? Citizens’ Perceptions of AI-based Discretion in Public Administration. ACM International Conference Proceeding Series, 57–67. https://doi.org/10.1145/3582515.3609518

5. Allen, G., & Owens, M. (2010). The Definitive Guide to SQLite (2nd ed.). Apress. https://doi.org/10.1007/9781-4302-3226-1

6. Arnstein, S. R. (2019). A Ladder of Citizen Participation. Journal of the American Planning Association, 85(1), 24–34. https://doi.org/10.1080/01944363.2018.15 59388

7. Arora, A., Gupta, M., Mehmi, S., Khanna, T., Chopra, G., Kaur, R., & Vats, P. (2024). Towards Intelligent Governance: The Role of AI in Policymaking and Decision Support for E-Governance. In Smart Innovation, Systems and Technologies (Vol. 379). https://doi.org/10.1007/978-981-99-8612-5_19

8. Ayling, J., & Chapman, A. (2021). Putting AI ethics to work: are the tools fit for purpose? AI and Ethics, 2, 405–429. https://doi.org/10.1007/s43681-021-00084-x

9. Barn, B. S. (2020). Mapping the public debate on ethical concerns: algorithms in mainstream media. Journal of Information, Communication and Ethics in Society, 18(1), 38–53. https://doi.org/10.1108/JICES-04-2019-0039

10. Bono Rossello, N., Simonofski, A., & Castiaux, A. (2025). Artificial intelligence for digital citizen participation: Design principles for a collective intelligence architecture. Government Information Quarterly, 42(2), 102020. https://doi.org/https://doi.org/10.1016/j.giq.2025.102020

11. Cath, C. (2018). Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133). https://doi.org/10.1098/rsta.2018.0080

12. Criado, J Ignacio, Sandoval-Almazán, Rodrigo, & Gil-Garcia, J Ramon. (2024). Artificial intelligence and public administration: Understanding actors, governance, and policy from micro, meso, and macro perspectives. Public Policy and Administration, 40(2), 173–184. https://doi.org/10.1177/09520767241272921

13. Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031

14. Ejjami, R. (2024). Integrative Literature Review 5.0: Leveraging Ai and Emerging Technologies to Redefine Academic Research. International Journal For Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i05.28756

15. Fadhel, M. A., Duhaim, A. M., Saihood, A., Sewify, A., Al-Hamadani, M. N. A., Albahri, A. S., Alzubaidi, L., Gupta, A., Mirjalili, S., & Gu, Y. (2024). Comprehensive systematic review of information fusion methods in smart cities and urban environments. Information Fusion, 107, 102317. https://doi.org/10.1016/J.INFFUS.2024.102317

16. Feiler, J. (2015). Using SQLite Basics: Storing and Retrieving Data. In J. Feiler (Ed.), Introducing SQLite for Mobile Developers (pp. 15–27). Apress. https://doi.org/10.1007/978-1-4842-1766-5_3

17. Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. In Machine Learning and the City: Applications in Architecture and Urban Design.

18. Gamage, P. (2016). New development: Leveraging ‘big data’ analytics in the public sector. Public Money & Management, 36(5), 385–390. https://doi.org/10.1080/09540962.2016.1194087

19. Guerreiro, J., Garriga, R., Lozano Bagén, T., Sharma, B., Karnik, N. S., & Matić, A. (2024). Transatlantic transferability and replicability of machine-learning algorithms to predict mental health crises. Npj Digital Medicine, 7(1), 227. https://doi.org/10.1038/s41746-02401203-8

20. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI-Explainable artificial intelligence. Science Robotics, 4(37), eaay7120. https://doi.org/10.1126/scirobotics.aay7120

21. Henman, P. (2020). Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42(4), 209–221. https://doi.org/10.1080/23276665.2020.1816188

22. Huang, Y., Zhang, X., & Li, Y. (2023). A Novel Hybrid Model for PM2.5 Concentration Forecasting Based on Secondary Decomposition Ensemble and Weight Combination Optimization. IEEE Access, 11, 119748–119765. https://doi.org/10.1109/ACCESS.2023.3327707

23. Iftikhar, R., & Khan, Dr. M. (2020). Social Media Big Data Analytics for Demand Forecasting: Development and Case Implementation of an Innovative Framework. Journal of Global Information Management, 28, 103–120. https://doi.org/10.4018/JGIM.2020010106

24. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

25. Keller, P., & Drake, A. (2021). Exclusivity and paternalism in the public governance of explainable AI. Computer Law & Security Review, 40, 105490. https://doi.org/10.1016/J.CLSR.2020.105490

26. Khan, M. S., Umer, H., & Faruqe, F. (2024). Artificial intelligence for low income countries. Humanities and Social Sciences Communications, 11(1), 1422. https://doi.org/10.1057/s41599-024-03947-w

27. Khikmat, R., Otabek, K., Shokhida, Y., & Khurmat, O. (2021). Developing a model and algorithm for decision support in self-government bodies using machine learning. International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2021. https://doi.org/10.1109/ICISCT52966.2021.9670157

28. Krijger, J. (2024). What About Justice and Power Imbalances? A Relational Approach to Ethical Risk Assessments for AI. Digit. Soc., 3, 56. https://doi.org/10.1007/s44206-024-00139-6

29. Lahdili, N., Onder, M., & Nyadera, I. (2024). Artificial Intelligence and Citizen Participation in Governance: Opportunities and Threats. Amme Idaresi Dergisi, 57, 202–229.

30. Leslie, D. (2019). Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of AI systems in the public sector . Zenodo. https://doi.org/10.5281/zenodo.3240529

31. Long, Y., & Gil-Garcia, J. R. (2023). Understanding the Extent of Automation and Process Transparency Appropriate for Public Services: The AI Cases in Chinese Local Governments. International Journal of Electronic Government Research, 19(1). https://doi.org/10.4018/IJEGR.322550

32. Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. https://doi.org/10.1016/J.GIQ.2022.101774

33. Maffei, S., Francesco, L., & and Villari, B. (2020). Data-driven anticipatory governance. Emerging scenarios in data for policy practices. Policy Design and Practice, 3(2), 123-134. https://doi.org/10.1080/25741292.2020.1763896

34. Masoud, N. (2025). Artificial intelligence and unemployment dynamics: an econometric analysis in high-income economies. Technological Sustainability, 4(1), 30–50. https://doi.org/10.1108/TECHS-04-2024-0033

35. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv., 54(6). https://doi.org/10.1145/3457607

36. Munné, R. (2016). Big Data in the Public Sector. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-21569-3_11

37. Murata, T. (2022). Policy Making Based on Real-Scale Social Simulations. 2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems, SCIS and ISIS 2022. https://doi.org/10.1109/SCISISIS55246.2022.10001860

38. Ogunleye, O. S. (2024). Using artificial intelligence to enhance e-government services delivery through data science and machine learning. In Machine Learning and Data Science Techniques for Effective Government Service Delivery. https://doi.org/10.4018/978-1-6684-97166.ch001

39. Osman, B. M., & Muse, A. M. S. (2024). Predictive analysis of Somalia’s economic indicators using advanced machine learning models. Cogent Economics and Finance, 12(1). https://doi.org/10.1080/23322039.2024.2426535

40. Otley, A., Morris, M., Newing, A., & Birkin, M. (2021). Local and application-specific geodemographics for data-led urban decision making. Sustainability (Switzerland), 13(9), 4873. https://doi.org/10.3390/su13094873

41. Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10. https://doi.org/10.1017/dap.2024.3

42. Qiu, J., & Zhao, Y. (2025). Traffic Prediction with Data Fusion and Machine Learning. Analytics, 4(2). https://doi.org/10.3390/analytics4020012

43. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 33–44. https://doi.org/10.1145/3351095.3372873

44. Rezk, M. A., Ojo, A., El Khayat, G. A., & Hussein, S. (2018). A Predictive Government Decision Based on Citizen Opinions: Tools & Results. Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance, 712–714. https://doi.org/10.1145/3209415.3209504

45. Ridley, M. (2022). Explainable Artificial Intelligence (XAI): Adoption and Advocacy. Information Technology and Libraries, 41(2). https://doi.org/10.6017/ital.v41i2.14683

46. Sanchez, T. W., Brenman, M., & Ye, X. (2025). The Ethical Concerns of Artificial Intelligence in Urban Planning. Journal of the American Planning Association, 91(2), 294–307. https://doi.org/10.1080/01944363.2024.2355305

47. Satri, J., El Mokhi, C., & Hachimi, H. (2024). Predicting the outcome of regional development projects using machine learning. IAES International Journal of Artificial Intelligence, 13(1), 863–875. https://doi.org/10.11591/ijai.v13.i1.pp863-875

48. Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/https://doi.org/10.1016/j.giq.2021.101624

49. Spillias, S., Tuohy, P., Andreotta, M., Annand-Jones, R., Boschetti, F., Cvitanovic, C., Duggan, J., Fulton, E., Karcher, D., Paris, C., Shellock, R., & Trebilco, R. (2024). Human-AI collaboration to identify literature for evidence synthesis. Cell Reports Sustainability. https://doi.org/10.1016/j.crsus.2024.100132

50. Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 1–9. https://doi.org/10.1145/3465416.3483305

51. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

52. Vatamanu, A. F., & Tofan, M. (2025). Integrating Artificial Intelligence into Public Administration: Challenges and Vulnerabilities. Administrative Sciences, 15(4). https://doi.org/10.3390/admsci15040149

53. Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), 2053951717743530. https://doi.org/10.1177/2053951717743530

54. Veale, M., & Brass, I. (2019). Administration by Algorithm? Public Management Meets Public Sector Machine Learning. Oxford Academic. https://doi.org/10.1093/oso/9780198838494.003.0006

55. Veale, M., Van Kleek, M., & Binns, R. (2018). Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3174014

56. Whitfield, S., & Hofmann, M. A. (2023). Elicit: AI literature review research assistant. Public Services Quarterly, 19(3), 201-207. https://doi.org/10.1080/15228959.2023.2224125

57. Wirtz, B. W., & Müller, W. M. (2019). An integrated artificial intelligence framework for public management. Public Management Review, 21(7), 1076–1100. https://doi.org/10.1080/14719037.2018.1549268

58. Wirtz, B. W., Langer, P. F., & Fenner, C. (2021). Artificial Intelligence in the Public Sector - a Research Agenda. International Journal of Public Administration, 44(13), 1103-1128. https://doi.org/10.1080/01900692.2021.1947319

59. Zang, J., & You, P. (2023). An industrial IoT-enabled smart healthcare system using big data mining and machine learning. Wireless Networks, 29(2), 909-918. https://doi.org/10.1007/s11276-022-03129-z

60. Zhang, D., Pee, L. G., Pan, S. L., & Cui, L. (2022). Big data analytics, resource orchestration, and digital sustainability: A case study of smart city development. Government Information Quarterly, 39(1), 101626. https://doi.org/https://doi.org/10.1016/j.giq.2021.101626

61. Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4), 1060–1089. https://doi.org/10.1007/ s10618-017-0506-1


Review

For citations:


Nuruly Ye., Sansyzbayeva G.N., Ashirbekova L.Z., Tazhiyeva S.K. Machine Learning in Public Governance: A Systematic Review of Applications, Trends and Challenges. Economy: strategy and practice. 2025;20(2):85-103. https://doi.org/10.51176/1997-9967-2025-2-85-103

Views: 20


ISSN 1997-9967 (Print)
ISSN 2663-550X (Online)