Machine Learning in Public Governance: A Systematic Review of Applications, Trends and Challenges
https://doi.org/10.51176/1997-9967-2025-2-85-103
Abstract
Today, the active implementation of machine learning (hereinafter – ML) methods in public administration opens up new opportunities for forecasting, impact assessment and decision support, while simultaneously generating various challenges. The present study is aimed at a systematic review of scientific publications devoted to applying ML methods in the field of public administration, with an emphasis on identifying thematic areas, ethical and institutional challenges. The initial data set included 524 publications obtained using targeted search queries in the Scopus and Web of Science databases for the period 2014-2024. Data filtering was performed using SQLite, thematic mapping was performed in the VOSviewer environment, and metadata was structured using the Elicit tool and subsequent manual encoding. The analysis results allowed us to identify four functional areas of ML application in public administration: transparency and ethics, resource allocation and service provision, institutional design, and technical integration. Despite significant progress in the models’ technical implementation and predictive accuracy, in many cases, mechanisms for equity, transparency, and citizen participation have been poorly implemented. The scientific novelty of the work lies in the interdisciplinary synthesis and development of a typology of institutional challenges that arise when implementing ML systems in public administration. The prospects for further research are related to the empirical validation of decisions, the development of ethical audit methods, and institutional training for responsible, sustainable, and contextually adaptive use of algorithmic tools in the public administration system.
About the Authors
Yeldar NurulyKazakhstan
PhD candidate, Senior Lecturer, Senior Research Fellow
71 al-Farabi Ave., 050040, Almaty
Galiya N. Sansyzbayeva
Kazakhstan
Doc. Sc. (Econ.), Professor
71 al-Farabi Ave., 050040, Almaty
Laura Z. Ashirbekova
Kazakhstan
Сand. Sc. (Econ.), Associate Professor
71 al-Farabi Ave., 050040, Almaty
Samal K. Tazhiyeva
Kazakhstan
Сand. Sc. (Econ.), Senior Lecturer
71 al-Farabi Ave., 050040, Almaty
References
1. Ahern, D. (2025). The New Anticipatory Governance Culture for Innovation: Regulatory Foresight, Regulatory Experimentation and Regulatory Learning. European Business Organization Law Review. https://doi.org/10.1007/s40804-025-00348-7
2. Akter, S., Dwivedi, Y. K., Sajib, S., Biswas, K., Bandara, R. J., & Michael, K. (2022). Algorithmic bias in machine learning-based marketing models. Journal of Business Research, 144, 201–216. https://doi.org/https://doi.org/10.1016/j.jbusres.2022.01.083
3. Alexopoulos, C., Diamantopoulou, V., Lachana, Z., Charalabidis, Y., Androutsopoulou, A., & Loutsaris, M. A. (2019). How machine learning is changing e-government. ACM International Conference Proceeding Series, Part F1481, 354–363. https://doi.org/10.1145/3326365.3326412
4. Aljuneidi, S., Heuten, W., Tepe, M., & Boll, S. (2023). Did that AI just Charge me a Fine? Citizens’ Perceptions of AI-based Discretion in Public Administration. ACM International Conference Proceeding Series, 57–67. https://doi.org/10.1145/3582515.3609518
5. Allen, G., & Owens, M. (2010). The Definitive Guide to SQLite (2nd ed.). Apress. https://doi.org/10.1007/9781-4302-3226-1
6. Arnstein, S. R. (2019). A Ladder of Citizen Participation. Journal of the American Planning Association, 85(1), 24–34. https://doi.org/10.1080/01944363.2018.15 59388
7. Arora, A., Gupta, M., Mehmi, S., Khanna, T., Chopra, G., Kaur, R., & Vats, P. (2024). Towards Intelligent Governance: The Role of AI in Policymaking and Decision Support for E-Governance. In Smart Innovation, Systems and Technologies (Vol. 379). https://doi.org/10.1007/978-981-99-8612-5_19
8. Ayling, J., & Chapman, A. (2021). Putting AI ethics to work: are the tools fit for purpose? AI and Ethics, 2, 405–429. https://doi.org/10.1007/s43681-021-00084-x
9. Barn, B. S. (2020). Mapping the public debate on ethical concerns: algorithms in mainstream media. Journal of Information, Communication and Ethics in Society, 18(1), 38–53. https://doi.org/10.1108/JICES-04-2019-0039
10. Bono Rossello, N., Simonofski, A., & Castiaux, A. (2025). Artificial intelligence for digital citizen participation: Design principles for a collective intelligence architecture. Government Information Quarterly, 42(2), 102020. https://doi.org/https://doi.org/10.1016/j.giq.2025.102020
11. Cath, C. (2018). Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133). https://doi.org/10.1098/rsta.2018.0080
12. Criado, J Ignacio, Sandoval-Almazán, Rodrigo, & Gil-Garcia, J Ramon. (2024). Artificial intelligence and public administration: Understanding actors, governance, and policy from micro, meso, and macro perspectives. Public Policy and Administration, 40(2), 173–184. https://doi.org/10.1177/09520767241272921
13. Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031
14. Ejjami, R. (2024). Integrative Literature Review 5.0: Leveraging Ai and Emerging Technologies to Redefine Academic Research. International Journal For Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i05.28756
15. Fadhel, M. A., Duhaim, A. M., Saihood, A., Sewify, A., Al-Hamadani, M. N. A., Albahri, A. S., Alzubaidi, L., Gupta, A., Mirjalili, S., & Gu, Y. (2024). Comprehensive systematic review of information fusion methods in smart cities and urban environments. Information Fusion, 107, 102317. https://doi.org/10.1016/J.INFFUS.2024.102317
16. Feiler, J. (2015). Using SQLite Basics: Storing and Retrieving Data. In J. Feiler (Ed.), Introducing SQLite for Mobile Developers (pp. 15–27). Apress. https://doi.org/10.1007/978-1-4842-1766-5_3
17. Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. In Machine Learning and the City: Applications in Architecture and Urban Design.
18. Gamage, P. (2016). New development: Leveraging ‘big data’ analytics in the public sector. Public Money & Management, 36(5), 385–390. https://doi.org/10.1080/09540962.2016.1194087
19. Guerreiro, J., Garriga, R., Lozano Bagén, T., Sharma, B., Karnik, N. S., & Matić, A. (2024). Transatlantic transferability and replicability of machine-learning algorithms to predict mental health crises. Npj Digital Medicine, 7(1), 227. https://doi.org/10.1038/s41746-02401203-8
20. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI-Explainable artificial intelligence. Science Robotics, 4(37), eaay7120. https://doi.org/10.1126/scirobotics.aay7120
21. Henman, P. (2020). Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, 42(4), 209–221. https://doi.org/10.1080/23276665.2020.1816188
22. Huang, Y., Zhang, X., & Li, Y. (2023). A Novel Hybrid Model for PM2.5 Concentration Forecasting Based on Secondary Decomposition Ensemble and Weight Combination Optimization. IEEE Access, 11, 119748–119765. https://doi.org/10.1109/ACCESS.2023.3327707
23. Iftikhar, R., & Khan, Dr. M. (2020). Social Media Big Data Analytics for Demand Forecasting: Development and Case Implementation of an Innovative Framework. Journal of Global Information Management, 28, 103–120. https://doi.org/10.4018/JGIM.2020010106
24. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2
25. Keller, P., & Drake, A. (2021). Exclusivity and paternalism in the public governance of explainable AI. Computer Law & Security Review, 40, 105490. https://doi.org/10.1016/J.CLSR.2020.105490
26. Khan, M. S., Umer, H., & Faruqe, F. (2024). Artificial intelligence for low income countries. Humanities and Social Sciences Communications, 11(1), 1422. https://doi.org/10.1057/s41599-024-03947-w
27. Khikmat, R., Otabek, K., Shokhida, Y., & Khurmat, O. (2021). Developing a model and algorithm for decision support in self-government bodies using machine learning. International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2021. https://doi.org/10.1109/ICISCT52966.2021.9670157
28. Krijger, J. (2024). What About Justice and Power Imbalances? A Relational Approach to Ethical Risk Assessments for AI. Digit. Soc., 3, 56. https://doi.org/10.1007/s44206-024-00139-6
29. Lahdili, N., Onder, M., & Nyadera, I. (2024). Artificial Intelligence and Citizen Participation in Governance: Opportunities and Threats. Amme Idaresi Dergisi, 57, 202–229.
30. Leslie, D. (2019). Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of AI systems in the public sector . Zenodo. https://doi.org/10.5281/zenodo.3240529
31. Long, Y., & Gil-Garcia, J. R. (2023). Understanding the Extent of Automation and Process Transparency Appropriate for Public Services: The AI Cases in Chinese Local Governments. International Journal of Electronic Government Research, 19(1). https://doi.org/10.4018/IJEGR.322550
32. Madan, R., & Ashok, M. (2023). AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, 40(1), 101774. https://doi.org/10.1016/J.GIQ.2022.101774
33. Maffei, S., Francesco, L., & and Villari, B. (2020). Data-driven anticipatory governance. Emerging scenarios in data for policy practices. Policy Design and Practice, 3(2), 123-134. https://doi.org/10.1080/25741292.2020.1763896
34. Masoud, N. (2025). Artificial intelligence and unemployment dynamics: an econometric analysis in high-income economies. Technological Sustainability, 4(1), 30–50. https://doi.org/10.1108/TECHS-04-2024-0033
35. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv., 54(6). https://doi.org/10.1145/3457607
36. Munné, R. (2016). Big Data in the Public Sector. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-21569-3_11
37. Murata, T. (2022). Policy Making Based on Real-Scale Social Simulations. 2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems, SCIS and ISIS 2022. https://doi.org/10.1109/SCISISIS55246.2022.10001860
38. Ogunleye, O. S. (2024). Using artificial intelligence to enhance e-government services delivery through data science and machine learning. In Machine Learning and Data Science Techniques for Effective Government Service Delivery. https://doi.org/10.4018/978-1-6684-97166.ch001
39. Osman, B. M., & Muse, A. M. S. (2024). Predictive analysis of Somalia’s economic indicators using advanced machine learning models. Cogent Economics and Finance, 12(1). https://doi.org/10.1080/23322039.2024.2426535
40. Otley, A., Morris, M., Newing, A., & Birkin, M. (2021). Local and application-specific geodemographics for data-led urban decision making. Sustainability (Switzerland), 13(9), 4873. https://doi.org/10.3390/su13094873
41. Papadakis, T., Christou, I. T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6, e10. https://doi.org/10.1017/dap.2024.3
42. Qiu, J., & Zhao, Y. (2025). Traffic Prediction with Data Fusion and Machine Learning. Analytics, 4(2). https://doi.org/10.3390/analytics4020012
43. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 33–44. https://doi.org/10.1145/3351095.3372873
44. Rezk, M. A., Ojo, A., El Khayat, G. A., & Hussein, S. (2018). A Predictive Government Decision Based on Citizen Opinions: Tools & Results. Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance, 712–714. https://doi.org/10.1145/3209415.3209504
45. Ridley, M. (2022). Explainable Artificial Intelligence (XAI): Adoption and Advocacy. Information Technology and Libraries, 41(2). https://doi.org/10.6017/ital.v41i2.14683
46. Sanchez, T. W., Brenman, M., & Ye, X. (2025). The Ethical Concerns of Artificial Intelligence in Urban Planning. Journal of the American Planning Association, 91(2), 294–307. https://doi.org/10.1080/01944363.2024.2355305
47. Satri, J., El Mokhi, C., & Hachimi, H. (2024). Predicting the outcome of regional development projects using machine learning. IAES International Journal of Artificial Intelligence, 13(1), 863–875. https://doi.org/10.11591/ijai.v13.i1.pp863-875
48. Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/https://doi.org/10.1016/j.giq.2021.101624
49. Spillias, S., Tuohy, P., Andreotta, M., Annand-Jones, R., Boschetti, F., Cvitanovic, C., Duggan, J., Fulton, E., Karcher, D., Paris, C., Shellock, R., & Trebilco, R. (2024). Human-AI collaboration to identify literature for evidence synthesis. Cell Reports Sustainability. https://doi.org/10.1016/j.crsus.2024.100132
50. Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 1–9. https://doi.org/10.1145/3465416.3483305
51. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
52. Vatamanu, A. F., & Tofan, M. (2025). Integrating Artificial Intelligence into Public Administration: Challenges and Vulnerabilities. Administrative Sciences, 15(4). https://doi.org/10.3390/admsci15040149
53. Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), 2053951717743530. https://doi.org/10.1177/2053951717743530
54. Veale, M., & Brass, I. (2019). Administration by Algorithm? Public Management Meets Public Sector Machine Learning. Oxford Academic. https://doi.org/10.1093/oso/9780198838494.003.0006
55. Veale, M., Van Kleek, M., & Binns, R. (2018). Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3174014
56. Whitfield, S., & Hofmann, M. A. (2023). Elicit: AI literature review research assistant. Public Services Quarterly, 19(3), 201-207. https://doi.org/10.1080/15228959.2023.2224125
57. Wirtz, B. W., & Müller, W. M. (2019). An integrated artificial intelligence framework for public management. Public Management Review, 21(7), 1076–1100. https://doi.org/10.1080/14719037.2018.1549268
58. Wirtz, B. W., Langer, P. F., & Fenner, C. (2021). Artificial Intelligence in the Public Sector - a Research Agenda. International Journal of Public Administration, 44(13), 1103-1128. https://doi.org/10.1080/01900692.2021.1947319
59. Zang, J., & You, P. (2023). An industrial IoT-enabled smart healthcare system using big data mining and machine learning. Wireless Networks, 29(2), 909-918. https://doi.org/10.1007/s11276-022-03129-z
60. Zhang, D., Pee, L. G., Pan, S. L., & Cui, L. (2022). Big data analytics, resource orchestration, and digital sustainability: A case study of smart city development. Government Information Quarterly, 39(1), 101626. https://doi.org/https://doi.org/10.1016/j.giq.2021.101626
61. Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4), 1060–1089. https://doi.org/10.1007/ s10618-017-0506-1
Review
For citations:
Nuruly Ye., Sansyzbayeva G.N., Ashirbekova L.Z., Tazhiyeva S.K. Machine Learning in Public Governance: A Systematic Review of Applications, Trends and Challenges. Economy: strategy and practice. 2025;20(2):85-103. https://doi.org/10.51176/1997-9967-2025-2-85-103