Reducing Project Uncertainty through Data-Driven Management: A Bibliometric Analysis
https://doi.org/10.51176/1997-9967-2025-4-97-113
Abstract
In the context of accelerated digitalization and increasing complexity of project activities, research in the field of Data-Driven Project Management (hereinafter – DDPM) remains fragmented, which limits a holistic understanding of its intellectual structure and development dynamics, despite the active introduction of digital technologies. The purpose of this study is to identify the intellectual structure, development dynamics, and dominant research trajectories of DDPM based on a bibliometric analysis of scholarly publications. The methodological basis of the study was the bibliometric analysis of scientific publications using the tools Bibliometrix and Biblioshiny. The empirical database includes 1,149 articles and reviews indexed in the Scopus database for the period 2000-2025. The results of the study showed that with an average annual growth rate of 18.83%, articles account for 1,012 documents (88.1%), reviews – 137 (11.9%). The average number of citati ons per publicati on was 25.13, and the analysis of co-citati ons and keywords revealed the dominance of clusters related to machine learning, predicti ve analyti cs, and risk management. The results confi rm that DDPM is fundamentally changing project management by improving decision support and maximizing resource effi ciency, which directly reduces fi nancial risks and uncertainty. The prospects for further research are related to the use of the results obtained by researchers when planning future scienti fi c work, as well as practi ti oners and decision makers, for the strategic implementati on of data analysis tools aimed at creati ng more sustainable, cost-eff ecti ve and high-performance projects.
About the Authors
L. SalykovaKazakhstan
Leila N. Salykova – PhD, Associate Professor
55/11 Mangilik El ave., Astana
Zh. B. Mussabekov
Kazakhstan
Zhandos B. Mussabekov – PhD student, Junior Researcher
55/11 Mangilik El ave., Astana
References
1. Adebayo, Y., Udoh, P., Kamudyariwa, X. B., & Osobajo, O. A. (2025). Artificial Intelligence in Construction Project Management: A Structured Literature Review of Its Evolution in Application and Future Trends. Digital, 5(3), 26. https://doi.org/10.3390/digital5030026
2. Adeniran, I., Agu, E., Efunniyi, C., Osundare, O., & Iriogbe, H. (2024). The future of project management in the digital age: Trends, challenges, and opportunities. Engineering Science & Technology Journal, 5(8), 2632–2648. https://doi.org/10.51594/estj.v5i8.1516
3. Ajirotutu, R., Garba, B., & Johnson, S. (2024). AI-driven risk mitigation: Transforming project management in construction and infrastructure development. World Journal of Advanced Engineering Technology and Sciences, 13, 611–623. https://doi.org/10.30574/wjaets.2024.13.2.0628
4. Akhavian, R., & Behzadan, A. H. (2016). Smartphone-based construction workers’ activity recognition and classification. Automation in Construction, 71, 198–209. https://doi.org/https://doi.org/10.1016/j.autcon.2016.08.015
5. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/https://doi.org/10.1016/j.joi.2017.08.007
6. Bühler, M. M., Nübel, K., Jelinek, T., Köhler, L., & Hollenbach, P. (2025). Bridging the Construction Productivity Gap-A Hierarchical Framework for the Age of Automation, Robotics, and AI. Buildings, 15(16), 2899. https://doi.org/10.3390/buildings15162899
7. Cabeças, A., & Marques da Silva, M. (2021). Project Management in the Fourth Industrial Revolution. TECHNO REVIEW. International Technology, Science and Society Review, 9, 79-96. https://doi.org/10.37467/gka-revtechno.v9.2804
8. Chou, S. (2008). Uncertainty management in a process environment. Journal of the Chinese Institute of Engineers, 31(4), 625–638. https://doi.org/10.1080/02533839.2008.9671416
9. Costantino, F., Di Gravio, G., & Nonino, F. (2015). Project selection in project portfolio management: An artificial neural network model based on critical success factors. International Journal of Project Management, 33(8), 1744–1754. https://doi.org/https://doi.org/10.1016/j.ijproman.2015.07.003
10. Cucos, S., & Turcan, R. (2025). Role of the construction industry in economic growth and sustainable development. Journal of Social Sciences, 8(1), 25–38. https://doi.org/10.52326/jss.utm.2025.8(1).02
11. David, A., & Thaveeporn, P. (2005). Predicting the Outcome of Construction Litigation Using Boosted Decision Trees. Journal of Computing in Civil Engineering, 19(4), 387–393. https://doi.org/10.1061/(ASCE)0887-3801(2005)19:4(387)
12. De Meyer, A., Loch, C., & Pich, M. (2002). Managing Project Uncertainty: From Variation to Chaos. Engineering Management Review, IEEE, 30(3), 91. https://doi.org/10.1109/EMR.2002.1032403
13. Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896. https://doi.org/10.1108/TQM-10-2019-0243
14. El Khatib, M., & Falasi, A. (2021). Effects of Artificial Intelligence on Decision Making in Project Management. American Journal of Industrial and Business Management, 11(3), 251–260. https://doi.org/10.4236/ajibm.2021.113016
15. El Khatib, M., Zitar, R., Alnaqbi, K., Alnaqbi, W., Alharmoodi, S., & Baydoun, A. (2023). Effect of Big Data and Analytics on Managing Projects. International Journal of Computers and Their Applications, 30(2), 173–182.
16. Daraojimba, E., Nwasike, C., Adegbite, A., Ezeigweneme, C., & Gidiagba. J. (2024). Comprehensive review of agile methodologies in project management. Computer Science & IT Research Journal, 5(1), 190–218. https://doi.org/10.51594/csitrj.v5i1.717
17. Faghihi, V., Nejat, A., Reinschmidt, K. F., & Kang, J. H. (2015). Automation in construction scheduling: a review of the literature. The International Journal of Advanced Manufacturing Technology, 81(9), 1845–1856. https://doi.org/10.1007/s00170-015-7339-0
18. Hanafy, N. O., & Hanafy, N. O. (2025). An Extensive Examination of Uses of Machine Learning and Artificial Intelligence in The Construction Industry’s Project Life Cycle. Energy and Buildings, 345, 116094 https://doi.org/10.1016/j.enbuild.2025.116094
19. Hashfi, M. I., & Raharjo, T. (2023). Exploring the Challenges and Impacts of Artificial Intelligence Implementation in Project Management: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 14(9). https://doi.org/10.14569/IJACSA.2023.0140940
20. Hoang, A. (2025). Evaluating Bibliometrics Reviews: A Practical Guide for Peer Review and Critical Reading. Evaluation Review, 49(6), 1074–1102. https://doi.org/10.1177/0193841X251336839
21. Hohl, P., Klünder, J., van Bennekum, A., Lockard, R., Gifford, J., Münch, J., Stupperich, M., & Schneider, K. (2018). Back to the future: origins and directions of the “Agile Manifesto” – views of the originators. Journal of Software Engineering Research and Development, 6(1), 15. https://doi.org/10.1186/s40411-018-0059-z
22. Iqbal, R., Doctor, F., More, B., Mahmud, S., & Yousuf, U. (2020). Big Data analytics and Computational Intelligence for Cyber-Physical Systems: Recent trends and state of the art applications. Future Generation Computer Systems, 105, 766–778. https://doi.org/https://doi.org/10.1016/j.future.2017.10.021
23. Jørgensen, T., & Wallace, S. W. (2000). Improving project cost estimation by taking into account managerial flexibility. European Journal of Operational Research, 127(2), 239–251. https://doi.org/https://doi.org/10.1016/S0377-2217(99)00484-1
24. Koi-Akrofi, J., Henry Matey, A., & Koi-Akrofi, G. (2019). Understanding the Characteristics, Benefits and Challenges of Agile IT Project Management: A Literature Based Perspective. International Journal of Software Engineering & Applications, 10(5), 25–44. https://doi.org/10.5121/ijsea.2019.10502
25. Krasteva, I., & Ilieva, S. (2020). Adopting Agile Software Development Methodologies in Big Data Projects – a Systematic Literature Review of Experience Reports. 2020 IEEE International Conference on Big Data (Big Data), 2028–2033. https://doi.org/10.1109/BigData50022.2020.9378118
26. Kumar, R. (2025). Bibliometric Analysis: Comprehensive Insights into Tools, Techniques, Applications, and Solutions for Research Excellence. Spectrum of Engineering and Management Sciences, 3(1), 45–62. https://doi.org/10.31181/sems31202535k
27. Lenfle, S., & Loch, C.H. (2010). Lost Roots: How Project Management Came to Emphasize Control over Flexibility and Novelty. California Management Review, 53(1), 32–55. https://doi.org/10.1525/cmr.2010.53.1.32
28. Leong, J., Yee, K., Baitsegi, O., Palanisamy, L., & Ramasamy, R. K. (2023). Hybrid Project Management between Traditional Software Development Lifecycle and Agile Based Product Development for Future Sustainability. Sustainability, 15(2), 1121. https://doi.org/10.3390/su15021121
29. Marinho, M., Sampaio, S., & Moura, H. (2018). Managing uncertainty in software projects. Innovations in Systems and Software Engineering, 14(3), 157–181. https://doi.org/10.1007/s11334-017-0297-y
30. Marnewick, C., & Marnewick, A. L. (2022). Digitalization of project management: Opportunities in research and practice. Project Leadership and Society, 3, 100061. https://doi.org/https://doi.org/10.1016/j.plas.2022.100061
31. Martinsuo, M., Korhonen, T., & Laine, T. (2014). Identifying, framing and managing uncertainties in project portfolios. International Journal of Project Management, 32(5), 732–746. https://doi.org/10.1016/j.ijproman.2014.01.014
32. Moniruzzaman, A. B. M. (2013). Comparative Study on Agile software development methodologies. Cornell University. https://doi.org/10.48550/arXiv.1307.3356
33. Nachbagauer, A. G. M., & Schirl-Boeck, I. B. (2018). Organizational maturity beyond risk management: Successfully managing the unexpected. In Developing Organizational Maturity for Effective Project Management (pp. 78–103). IGI Global. https://doi.org/10.4018/978-1-5225-3197-5.ch005
34. Osemeike, G., Eyieyien, Eyieyien, O., Paul, P., & Ijomah, T. (2024). Strategic approaches for successful digital transformation in project management across industries. International Journal of Frontiers in Engineering and Technology Research, 7, 7. https://doi.org/10.53294/ijfetr.2024.7.1.0037
35. Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J.M., Grimshaw, J.M., Hrõbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P.F., & Moher, D. (2020). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10. https://doi.org/10.1186/s13643-021-01626-4
36. Pantović, V., Vidojević, D., Vujičić, S., Sofijanić, S., & Jovanović-Milenković, M. (2024). Data-Driven Decision Making for Sustainable IT Project Management Excellence. Sustainability, 16(7), 3014. https://doi.org/10.3390/su16073014
37. PMI. (2021). A Guide to the Project Management Body of Knowledge – Seventh Edition and The Standard for Project Management. Project Management Institute. Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach for software project effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184–196. https://doi.org/https://doi.org/10.1016/j.jss.2017.11.066
38. Ranasinghe, U., Jefferies, M., Davis, P., & Pillay, M. (2021). Conceptualising project uncertainty in the context of building refurbishment safety: A systematic review. Buildings, 11(3), 1–15. https://doi.org/10.3390/buildings11030089
39. Salimimoghadam, S., Ghanbaripour, A. N., Tumpa, R. J., Kamel Rahimi, A., Golmoradi, M., Rashidian, S., & Skitmore, M. (2025). The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers. Buildings, 15(7), 1130. https://doi.org/10.3390/buildings15071130
40. Saunders, F. C., Gale, A. W., & Sherry, A. H. (2015). Conceptualising uncertainty in safety-critical projects: A practitioner perspective. International Journal of Project Management, 33(2), 467–478. https://doi.org/10.1016/j.ijproman.2014.09.002
41. Siddiqui, A., Chowdhary, H., Krishna, R., Muniyandy, E., & Maguluri, L. (2024). Harnessing Big Data: Strategic Insights for IT Management. International Journal of Advanced Computer Science and Applications, 15(7), 912. https://doi.org/10.14569/IJACSA.2024.0150790
42. Steegh, R., Van De Voorde, K., & Paauwe, J. (2025). Understanding how agile teams reach effectiveness: A systematic literature review to take stock and look forward. Human Resource Management Review, 35(1), 101056. https://doi.org/https://doi.org/10.1016/j.hrmr.2024.101056
43. Tynchenko, V., Lomazov, A., Lomazov, V., Evsyukov, D., Nelyub, V., Borodulin, A., Gantimurov, A., & Malashin, I. (2024). Adaptive Management of Multi-Scenario Projects in Cybersecurity: Models and Algorithms for Decision-Making. Big Data and Cognitive Computing, 8(11), 150. https://doi.org/10.3390/bdcc8110150
44. Vergara, D., del Bosque, A., Lampropoulos, G., & Fernández-Arias, P. (2025). Trends and Applications of Artificial Intelligence in Project Management. Electronics, 14(4), 800. https://doi.org/10.3390/electronics14040800
45. Wang, Y.-R., Yu, C.-Y., & Chan, H.-H. (2012). Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. International Journal of Project Management, 30(4), 470–478. https://doi.org/10.1016/j.ijproman.2011.09.002
46. Wauters, M., & Vanhoucke, M. (2014). Support Vector Machine Regression for project control forecasting. Automation in Construction, 47, 92–106. https://doi.org/10.1016/j.autcon.2014.07.014
47. Wauters, M., & Vanhoucke, M. (2016). A comparative study of Artificial Intelligence methods for project duration forecasting. Expert Systems with Applications, 46, 249–261. https://doi.org/10.1016/j.eswa.2015.10.008
48. Wauters, M., & Vanhoucke, M. (2017). A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence. European Journal of Operational Research, 259(3), 1097–1111. https://doi.org/https://doi.org/10.1016/j.ejor.2016.11.018
49. Zhang, J., & El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking. Automation in Construction, 73, 45–57. https://doi.org/10.1016/j.autcon.2016.08.027
Review
For citations:
Salykova L., Mussabekov Zh.B. Reducing Project Uncertainty through Data-Driven Management: A Bibliometric Analysis. Economy: strategy and practice. 2025;20(4):97-113. https://doi.org/10.51176/1997-9967-2025-4-97-113
JATS XML


















