Preview

Economy: strategy and practice

Advanced search

Mapping the Scientific Labour Organization in Agricultural and Remote Sensing Research

https://doi.org/10.51176/1997-9967-2025-3-139-151

Abstract

Scientific labour organization is becoming relevant in the context of the rapidly changing requirements of the modern market, especially in the growing human interaction with robotic systems and artificial intelligence. The purpose of this study is to conduct a bibliometric and content analysis of scientific labour organization in agriculture, with a focus on the integration of remote sensing technologies and precision farming. The methodological basis of the work included bibliometric and content analysis of scientific articles selected from the Web of Science database for the period 1992-2025, using clusterization (CiteSpace 6.3.R1). The results showed a steady increase in publication activity: since 2017, the number of papers has increased to four  per year, and the peak of citations occurred in 2022. Cluster analysis revealed two dominant areas: “Industry 4.0” (77 articles, the average publication year is 2016, S = 0.99) and “Precision Agriculture” (34 articles, the average year is 2014, S = 1.0). These clusters have shown that sustainable land use technologies and precision farming innovations are changing the organization of labor and management of agricultural enterprises. The results demonstrate the growing interest in the problems of labor organization in the context of the digitalization of the agricultural sector, the strengthening of interdisciplinary ties and the expansion of the range of applied research. In the future, it is advisable to expand databases for analysis, include more intersectoral research and develop organizational models that take into account the social and ethical aspects of the introduction of new technologies.

About the Authors

Kristina V. Konstantinova
National Center of Space Research and Technology
Kazakhstan

Kristina V. Konstantinova – PhD, Researcher, National Center of Space Research and Technology, 

15, Shevchenko St., Almaty.



Nurlan E. Bekmukhamedov
National Center of Space Research and Technology
Kazakhstan

Nurlan E. Bekmukhamedov – Cand. Sc. (Agr.), head of the Laboratory of Space Monitoring of Agricultural Production, 

15, Shevchenko St., Almaty.



Nurdaulet B. Zhumabay
Al-Farabi Kazakh National University; National Center of Space Research and Technology
Kazakhstan

Nurdaulet B. Zhumabay – Master Student, Department of Cartography and Geoinformatics,  

 71, Al-Farabi Ave., Almaty;

15, Shevchenko St., Almaty.



References

1. Awais, M., Wang, X., Hussain, S., Aziz, F., & Mahmood, M. Q. (2025). Advancing precision agriculture through digital twins and smart farming technologies: A review. AgriEngineering, 7(5), 137 https://doi.org/10.3390/agriengineering7050137

2. Borchers, M. R., & Bewley, J. M. (2015). An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness. Journal of Dairy Science, 98(6), 4198-4205. https://doi.org/10.3168/jds.2014-8963

3. Caja, G., Castro-Costa, A., & Knight, C. H. (2016). Engineering to support wellbeing of dairy animals. Journal of Dairy Research, 83(2), 136-147. https://doi.org/10.1017/S0022029916000261

4. Chaves, J. V. B., Gutierrez Rosas, C. L., Ferraz, C. P. A., Aiello, L. H. F., Peche Filho, A., Mota, L. T. M., Longo, R. M., & Ribeiro, A. Í. (2025). Soil conservation and information technologies: A literature review. Smart Agricultural Technology, 11, 100935. https://doi.org/10.1016/j.atech.2025.100935

5. Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61 (7), 1386-1409. https://doi.org/10.1002/asi.21309

6. Clarivate. (2025). Web of Science reports. Web of Science. Retrieved June 16, 2025 from https://www.webofscience.com/wos/woscc/analyze-results/72b15979-05de-41c0-82c8-8a6bb165be3a-017391787b

7. Colnago, P., Rossing, W. A. H., & Dogliotti, S. (2021). Closing sustainability gaps on family farms: Combining on-farm co-innovation and model-based explorations. Agricultural Systems, 188, 103017 https://doi.org/10.1016/j.agsy.2020.103017

8. Driessen, C., & Heutinck, L. F. M. (2014). Cows desiring to be milked? Milking robots and the co-evolution of ethics and technology on Dutch dairy farms. Agriculture and Human Values, 32(1), 3-20. https://doi.org/10.1007/s10460-014-9515-5

9. Eastwood, C. R., Chapman, D. F., & Paine, M. S. (2012). Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agricultural Systems, 108, 10-18. https://doi.org/10.1016/j.agsy.2011.12.005

10. Forclaz, A. R. (2017). Shaping the future of farming: The International Labour Organization and agricultural education, 1920s to 1950s. Agricultural History Review, 65(2), 320-339.

11. Forclaz, A. R. (2019). From reconstruction to development: The early years of the Food and Agriculture Organization (FAO) and the conceptualization of rural welfare, 1945-1955. International History Review, 41(2), 351-371. https://doi.org/10.1080/07075332.2018.147887 3

12. Freidenzon, E.Z. (1968) Scientific organization of labor and related problems. Metallurgist 12, 97-99. https://doi.org/10.1007/BF00736871

13. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1), 23–34. https://doi.org/10.1016/j.fcr.2009.06.017

14. Hammer, W. (1992). 50 Years of Work Science in Agriculture - 1941–1991. Landbauforschung Völkenrode, 42(3), 165-168.

15. Hansen, B. G. (2015). Robotic milking-farmer experiences and adoption rate in Jæren, Norway. Journal of Rural Studies, 41, 109-117. https://doi.org/10.1016/j.jrurstud.2015.08.004

16. Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for Industrie 4.0 scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS) (pp. 3928–3937). IEEE. https://doi.org/10.1109/HICSS.2016.488

17. Hostiou, N., Fagon, J., Chauvat, S., Turlot, A., Kling-Eveillard, F., Boivin, X., & Allain, C. (2017). Impact of precision livestock farming on work and human-animal interactions on dairy farms: A review. Biotechnologie, Agronomie, Société et Environnement, 21(4), 268–275. https://doi.org/10.25518/1780-4507.13706

18. Hostiou, N., Vollet, D., Benoit, M., & Delfosse, C. (2020). Employment and farmers’ work in European ruminant livestock farms: A review. Journal of Rural Studies, 74, 223–234. https://doi.org/10.1016/j.jrurstud.2020.01.008

19. ILO. (2025). Innovative approaches to formalization in Asia and the Pacific: Background report to ILO Asia and the Pacific tripartite regional knowledge sharing forum (1st ed.). International Labour Organization. https://doi.org/10.54394/XOSQ7112

20. Kouakou, P. A. K. (2023). Impact of local processing of agricultural raw materials on job creation in the West African Monetary and Economic Union. Agricultural and Resource Economics - International Scientific E-Journal, 9(3), 250–265. https://doi.org/10.51599/are.2023.09.03.11

21. Lucas, V., & Gasselin, P. (2022). An intensive and collective style of farm work that enables the agroecological transition: A case study of six French farm machinery cooperatives. Frontiers in Sustainable Food Systems, 6, 862779. https://doi.org/10.3389/fsufs.2022.862779

22. Malanski, P. D., Dedieu, B., & Schiavi, S. (2021). Mapping the research domains on work in agriculture: A bibliometric review from Scopus database. Journal of Rural Studies, 81, 305–314. https://doi.org/10.1016/j.jrurstud.2020.10.050

23. Malanski, P. D., Schiavi, S. M. D., & Dedieu, B. (2022). Work in agriculture in the international scientific literature (2010–2019). Cahiers Agricultures, 31, 23. https://doi.org/10.1051/cagri/2022021

24. Malanski, P. D., Schiavi, S., & Dedieu, B. (2019). Characteristics of “work in agriculture” scientific communities: A bibliometric review. Agronomy for Sustainable Development, 39(4), 36. https://doi.org/10.1007/s13593-019-0582-2

25. Müller, F., Jaeger, D., & Hanewinkel, M. (2019). Digitization in wood supply: A review on how Industry 4.0 will change the forest value chain. Computers and Electronics in Agriculture, 162, 206–218. https://doi.org/10.1016/j.compag.2019.04.002

26. Mundigl, S., Blackburn, C., Pinak, M., Colgan, T., Clement, C., Otto, T., Voytchev, M., Niu, S. L., Coates, R., & Le Guen, B. (2021). The Inter-Agency Committee on Radiation Safety—30 years of international coordination of radiation protection and safety matters. Journal of Radiological Protection, 41(4), 1381. https://doi.org/10.1088/1361-6498/ac0b4a

27. Pan-Montojo, J., & Mignemi, N. (2017). International organizations and agriculture, 1905 to 1945: Introduction. Agricultural History Review, 65(2), 237-253.

28. Pashkevich, V. A. (2024). Kadrovaya politika Respubliki Belarus’ v sel’skom khozyaistve: Tendentsii, problemy, resheniya [Personnel policy of the Republic of Belarus in agriculture: Trends, problems, solutions]. Proceedings of the National Academy of Sciences of Belarus. Agrarian Series, 62(3), 183-199. https://doi.org/10.29235/1817-7204-2024-62-3-183-199 (In Russ)

29. Rohozha, M., & Svyaschenko, Z. (2024). Formation of a new model of rational agriculture management by Yevhen Chykalenko. East European Historical Bulletin, 30, 50-59. https://doi.org/10.24919/2519-058X.30.299912

30. Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Invited review: Sensors to support health management on dairy farms. Journal of Dairy Science, 96(4), 1928-1952. https://doi.org/10.3168/jds.2012-6107

31. Schewe, R. L., & Stuart, D. (2014). Diversity in agricultural technology adoption: How are automatic milking systems used and to what end? Agriculture and Human Values, 32(2), 199-213. https://doi.org/10.1007/s10460-014-9542-2

32. Sodoma, R., Lesyk, L., Hryshchuk, A., Dubynetska, P., & Shmatkovska, T. (2022). Innovative development of rural territories and agriculture in Ukraine. Scientific Papers - Series Management, Economic Engineering in Agriculture and Rural Development, 22(4), 685-696.

33. Svitovyi, O., Kirdan, O., & Gechbaia, B. (2022). Organizational-economic foundations of formation of value added in grain production. Agricultural and Resource Economics: International Scientific E-Journal, 8(3), 200–223. https://doi.org/10.51599/are.2022.08.03.10

34. Taylor, F. W. (1911) The Principles of Scientific Management. New York: Harper & Brothers.

35. van Dijk, F. J., & Moti, S. (2023). A repository for publications on basic occupational health services and similar health care innovations. Safety and Health at Work, 14(1), 50-58. https://doi.org/10.1016/j.shaw.2023.01.003

36. Walsh, D., Strandgard, M., & Carter, P. (2014). Evaluation of the Hitman PH330 acoustic assessment system for harvesters. Scandinavian Journal of Forest Research, 29(6), 593-602. https://doi.org/10.1080/02827581.2014.953198

37. Wang, Y., An, J., Shao, M., Wu, J., Zhou, D., Yao, X., Zhang, X., Cao, W., Jiang, C., & Zhu, Y. (2025). A comprehensive review of proximal spectral sensing devices and diagnostic equipment for field crop growth monitoring. Precision Agriculture, 26(3), 54. https://doi.org/10.1007/s11119-025-10251-3

38. Warren, A., Osbahr, H., Batterbury, S., & Chappell, A. (2003). Indigenous views of soil erosion at Fandou Beri, southwestern Niger. Geoderma, 111(3-4), 439-456. https://doi.org/10.1016/S0016-7061(02)00276-8

39. White, J. C., Coops, N. C., Wulder, M. A., Vastaranta, M., Hilker, T., & Tompalski, P. (2016). Remote sensing technologies for enhancing forest inventories: A review. Canadian Journal of Remote Sensing, 42(5), 619–641. https://doi.org/10.1080/07038992.2016.1207484

40. Wickman, A., Duysen, E., Cheyney, M., Pennington, W., Mazur, J., & Yoder, A. (2021). Development of an educational YouTube channel: A collaboration between US agricultural safety and health centers. Journal of Agromedicine, 26(1), 75-84. https://doi.org/10.1080/1059924X.2020.1845269

41. Yang, L., Lu, B., Schmidt, M., Natesan, S., & McCaffrey, D. (2025). Applications of remote sensing for crop residue cover mapping. Smart Agricultural Technology, 11, 100880 https://doi.org/10.1016/j.atech.2025.100880


Review

For citations:


Konstantinova K.V., Bekmukhamedov N.E., Zhumabay N.B. Mapping the Scientific Labour Organization in Agricultural and Remote Sensing Research. Economy: strategy and practice. 2025;20(3):139-151. https://doi.org/10.51176/1997-9967-2025-3-139-151

Views: 23


ISSN 1997-9967 (Print)
ISSN 2663-550X (Online)